Hidden Console Start (HCS) – Esconde la consola y lanza procesos/aplicaciones en segundo plano

Dicen que no te das cuenta de algo hasta que lo pierdes… Esto es lo que me ha pasado cuando recientemente mi orientación profesional ha cambiado y he tenido  que trabajar con sistemas Windows en vez de GNU-Linux.

Acostumbrado a tener corriendo servicios en distintas máquinas con GNU-Linux acabas echando de menos su shell y la bestialidad de herramientas que hay. Vale sí lo reconozco, al final trabajaba en una máquina Windows, pero porque sigo pensando que las herramientas de desarrollo siguen siendo mejor que las que hay disponibles en GNU-Linux. Hay que reconocer que un Windows lo uso sólo para desarrollar (eso sí multiplataforma) y para jugar, para lo demás GNU-Linux sin duda!!!

Una de las cosas que he echado en falta recientemente es la posibilidad de usar el operador & de background tan potente en GNU-Linux. Este operador permite lanzar un proceso que se sigue ejecutando sin bloquear la shell y si la cerramos, éste sigue en segundo plano. Pues esto tan chulo, no puedes hacerlo en un Windows, porque su comando start no lo permite y la opción /B del comando no impide que al cerrarse la consola de comandos el proceso que has lanzado muera. A no ser que el proceso que has lazando cree su propio hilo no dependiente del proceso de la consola. Y tampoco es posible lanzar un proceso de consola de comandos sin consola, a no ser que esté programado explícitamente que la consola se oculte o no aparezca. Windows en este aspecto se cubre mucho, porque la única forma de crear procesos en background es construyendo servicios de Windows que tienen sus propias reglas a cumplir y por consiguiente hace falta desarrollo específico para que algo corra en segundo plano.

Visto el panorama y teniendo cierto conocimiento e idea, me decidí a generar una herramienta similar que funcionase en Windows como el operador &, o por lo menos a intentarlo. Para ello lo primero pensé en que quizás lo más adecuado fuese hacerlo en multiplataforma y generar una solución que funcionase tanto en Windows como en GNU-Linux. Atendiendo a este requisito, enseguida a mi mente llegó Python, porque además su instalación de paquetes es sencilla y potente a partes iguales, por no decir que es posible generar binarios (por ejemplo un .exe en Windows) si hiciera falta gracias a herramientas como py2exe y PyInstaller.

Con el punto de partida claro y unas horas de desarrollo, consigo lo que bautizo como Hidden Console Start o HCS. El proyecto puedes encontrarlo en Github:

Y su instalación es sencilla si tienes ya Python en tu equipo. En caso de no tener Python, pásate por la web de Python y descárgate la última versión disponible. Una vez instalado Python, solo tienes que ejecutar el siguiente comando en el CMD o PowerShell para instalar HCS:

pip install hcs --upgrade

Una vez instalado puedes ejecutar el proceso o aplicación que se quiera ejecutando HCS de la siguiente forma:

hcs -e "P1" "P2" ... "Pn-1" "Pn"

Pongamos un ejemplo:

hcs -e "ping 127.0.0.1 > log1.txt" "ping 192.168.1.17 > log2.txt"

En el ejemplo se lanzan dos comandos ping a distintas direcciones que son guardados en log1.txt y log2.txt respectivamente. Como se puede ver la consola de comandos no queda bloqueada y la información de los comandos ejecutados se va guardando el los ficheros.

Si por alguna razón tus procesos o aplicaciones no mueren o acaban, puedes finalizarlos en el caso de Windows abriendo el administrador de tareas:

Y en el caso de GNU-Linux con htop:

De esta forma podemos lanzar procesos y aplicaciones en segundo plano en sistemas Windows de una forma más o menos equivalente a como lo haríamos en GNU-Linux. Y obviamente podríamos usar HCS en GNU-Linux porque también funciona, pudiendo usarlo de la misma manera que en Windows.

Aumentar espacio de tu Raspberry Pi usando un dispositivo de almacenamiento USB

Una de las bondades de los sistemas GNU/Linux es la posibilidad de montar una unidad USB y  formatearla convenientemente. La cual puede ser montada a voluntad o meterla en la fstab (File Systems TABle) para que se monte con el arranque del sistema si lo deseamos. Para estas cosas GNU/Linux es la caña y es super flexible!! 😉

Un opción que podría ejemplificar fácilmente el uso de este procedimiento, puede ser una Raspberry Pi a la que queráis darle más espacio que el que tenéis disponible en la microSD donde tenéis montado el sistema operativo. Actualmente las memorias USB han bajado mucho su precio y han aumentado los tamaños máximos de las mismas, encontrándonos a precios razonables memorias de 128GB o256GB.

Empecemos con lo básico que es conectar la memoria USB a la Rapsberry Pi (obvio pero por si acaso lo digo 😉 ). Con la memoria USB conectada ejecutamos el siguiente comando:

ls -l /dev/disk/by-uuid/

El comando nos responde identificado las unidades disponibles. Las unidades “mmcblk0p1” y “mmcblk0p2” corresponden a la partición de boot del la Rapsberry Pi y a la de ficheros de Raspbian (Sistema Operativo) respectivamente. La que nos insteresa es la “sda1“. Anota el identificador (UUID) que tiene, en mi ejemplo el mio es “51a4dc12-f769-4286-bdb6-58f40f6a7ce2“.

Ahora vamos a preparar el punto de montaje de la unidad. Para ello ejecuta el siguiente comando para crear la ruta “media/usb” donde montaremos la unidad:

sudo mkdir /media/usb

Puedes usar otra ruta si lo deseas, pero intenta que sea corta, ya que tendrás que escribirla tantas veces como quieras acceder a la unidad.

Ahora hay que asegurarnos que el usuario “pi” es propietario de la nueva carpeta donde montaremos la unidad. Para ello ejecuta:

sudo chown -R pi:pi /media/usb

Para montar la unidad lo haremos con el siguiente comando:

sudo mount /dev/sda1 /media/usb

Si ejecutamos el comando:

df -h -T

Veremos que aparece la unidad en el punto de montaje “media/usb” indicado, así como el tipo de sistema de ficheros. Si has usado otro punto de montaje, aparecerá que el que hayas puesto.

Como usar la memoria USB con el formato FAT32 (aparece como vfat) no es lo más óptimo, formatearemos la unidad a EXT4 mucho más óptimo para nuestro sistema Raspbian. Puedes formatear fácilmente la unidad con el siguiente comando tras desmontar la unidad con:

sudo umount /media/usb
sudo mkfs.ext4 /dev/sda

⚠️ Ten en cuenta que si ejecutas los comandos para formatear la memoria USB, perderás los datos que hubiese dentro. ⚠️ Si estamos conformes con el formateo decimos que sí.

Si quisiéramos que la unidad se montase automáticamente, tendremos que incluir la nueva unidad en fstab. Para ello abriremos primero el fichero de configuración de fstab:

sudo nano /etc/fstab

Y añadiremos tras la última línea esta otra:

UUID=51a4dc12-f769-4286-bdb6-58f40f6a7ce2 /media/usb ext4 auto,nofail,noatime,users,exec,rw 0 0

El parámetro más importante es el “UUID” que anotamos al principio del artículo. Si finalmente optaste por formatear la memoria USB a EXT4, te recomiendo que vuelvas a ejecutar el comando porque el valor habrá cambiado.

Para concer específicamente el significado de cada parámetro te dejo la siguiente referencia:

Si finalmente decidiste NO formatear la memoria USB, la línea cambia un poco y se sustituye “ext4” por “vfat“:

UUID=51a4dc12-f769-4286-bdb6-58f40f6a7ce2 /media/usb ext4 auto,nofail,noatime,users,exec,rw 0 0

Ahora solo nos resta comprobar si efectivamente la unidad se monta sola y para ello ejecutaremos un reinicio:

reboot

Si lo hemos hecho bien deberíamos poder ver la memoria USB en “/media/usb“. Ya tenemos más espacio en nuestra Raspberry Pi!! 😉

Feliz Navidad y Próspero Año 2018

Las vacaciones Navideñas y el fin de año ya están a la vuelta de la esquina y toca cerrar otro año en el que en lo personal y profesional no me puedo quejar.

Mascando Bits ha mejorado su número de visitantes y la recurrencia de los mismos. ¡Gracias a todos los que leéis y compartís! 😉 Este blog lo puse en marcha como sistema de información personal de dominio público, sin ninguna pretensión más allá de la de devolver algo de conocimiento y pasión de lo que es mi hobby y mi profesión.

Este año tengo cambios profesionales y espero seguir manteniendo mi actividad de publicación y el desarrollo de mis proyectos en GitHub.

Con mis mejores deseos ¡Felices Fiestas! (para los agnósticos y atéos), ¡Feliz Navidad! (para los creyentes) y ¡Feliz Año 2018! (para TODOS 😉 ). ¡Nos vemos a la vuelta!

 

 

Neurtura – O cómo sobrevivir en el mundo de la Monitorización Industrial

Ha costado que llegue el segundo invitado a Mascando Bits, pero nunca es tarde si la dicha es buena, y en este caso lo es. Hoy Xabier, compañero de fatigas en el trabajo, nos trae una retrospectiva con aplicación práctica de ingeniería de hardware y software al estilo open source que tanto ha marcado los inicios de Ingran Engineering, empresa de la que me siento orgulloso de pertenecer. Xabier ha sido y será siempre un MacGyver de la electrónica y la mecánica. Esperemos que esta sea la primera de otras muchas entradas.


Actualmente vivimos en un mundo complicado, luchando entre el software y hardware abierto y sistemas propietarios. En la confrontación entre la solución basada en ArduinoESP8266 de 5€ y el Siemens S7 de 500€. En el dilema de dar servicio a un precio adecuado y cumplir las directivas y el marcaje CE. Puede que aquí encontréis algo intermedio, o no. Pero por lo menos, fue nuestra solución durante un tiempo.

 

Introducción

La verdad que empecé a escribir esta entrada hace bastante tiempo, puede que hace más de uno año. Pero por fin lo he completado. A falta de que todavía monte un blog, quisiera agradecer a Rubén que me deje espacio en su blog para publicar.

Este va a ser la primera de varias entradas, comentando la funcionalidad de un sistema que en su día desarrollamos en Ingran Engineering, que actualmente ha quedado en desuso, al migrar a sistemas de adquisición de datos basados en Modbus-TCP, y también porque el módulo central del sistema, el Industruino que usamos en sus primeras versiones, nos dio bastantes problemas para los niveles de calidad y servicio que buscábamos. No obstante el fabricante ha sacado una revisión del Industruino que soluciona los problemas del primero y que además añade nuevas capacidades al dispositivo.

El las siguientes fotos os muestro la versión básica del Neurtura (nombre comercial del dispositivo de monitorización), en la primera podéis ver el aspecto exterior con los conectores:

 

En esta podéis ver los componentes internos:

Podéis observar de izquierda a derecha: Un magnetotérmico, un analizador de energía eléctrica, el Industruino D21G IND I/O (la versión más reciente) con su módulo ethernet al lado, una fuente de alimentación de 24 Voltios y un router Teltonika RUT230.

El la parte exterior tenemos conectores Harting, para la alimentación, para la conexión de las pinzas amperimétricas, para el analizador de energía, y para las conexiones de los sensores, actuadores y Modbus-485.

Si alguien no tiene demasiadas ganas de leer, que vaya al final, al apartado “Compilando“.

 

Contexto

¿Cómo narices se puede monitorizar un proceso industrial, en este caso concreto, una bomba de agua para regadío, de manera efectiva, eficaz y barata? Esa pregunta nos la hicimos en Ingran Engineering hace bastante tiempo, con la certeza de que tenía que haber una solución que tuviese las tres Bs (Bueno, Bonito y Barato). Esto era lo que necesitábamos:

  • Medida de parámetros eléctricos de una bomba: Potencia, Voltaje, Factor de Potencia…
  • Medidas de parámetros del acuífero: Conductividad eléctrica (salinidad), Nivel del agua bajo tierra…
  • Medida de parámetros del agua extraída: Caudal, Presión…
  • Registro de datos cada 10 segundos, y mostrarlos vía Web y en el móvil

Además, por si no fuera poco, teníamos las siguientes restricciones:

  • Necesidad de utilizar GSM/GPRS/3G para la comunicación.
  • Necesitaba tener marcaje CE y cumplirlo.
  • Tenía que ser compatible con lo que había ya montado: diversos tipos de caudalímtros/contadores, medidores de nivel de acuífero…

Aqualogy tenía una solución llamada IdroSmartWell que hacía todo eso, y más, a un precio que casi nos dio un infarto al escucharlo. La solución de software vino de la mano del proyecto EmonCMS de Open Energy Monitor y la de hardware tuvimos que apañárnosla.

 

Especificaciones técnicas

Las especificaciones técnicas de Neurtura que habéis visto en las fotos anteriores son las siguientes:

  • Analizador de energía eléctrica trifásica: Conexión a pinzas amperimétricas externas de 5A o 1A. Medida de V, I, P, PF, THD y más cosas…
  • 4 Entradas analógicas de 0-20mA o 0-10 Voltios: Resolución máxima de 18 bits.
  • 2 Salidas analógicas de 0-20mA o 0-10 Voltios: Resolución máxima de 12 bits.
  • 8 Entradas/Salidas digitales: Opción de usarlas como contadores de pulsos.
  • Conexión de Modbus-485 para conectar mas dispositivos.
  • Opción de postear (enviar) a EmonCMS directamente.
  • Guardado de datos en la SD local.
  • Guardado de parámetros de configuración en la EEPROM.
  • Guardado de datos de contadores y demás datos cambiantes en la FRAM propia.
  • RTC local.
  • Actualización del firmware remota: Utilizando el RUT230.

 

Compilando y cargando el firmware

El Industruino se programa utilizando el IDE de Arduino por USB, aunque también se puede programar por Ethernet utilizando TFTP, cosa que ya comentaré explicaré mas adelante en otra entrada.

En la Organización de Ingran Engineering de Github podéis encontrar el firmware y las librerías necesarias:

Para compilarlo y subirlo al Industruino, seguid estos pasos:

  1. Decargar el IDE portable de Arduino, versión 1.8.5
  2. Extraer arduino-1.8.5-windows.zip
  3. Dentro de la carpeta de arduino-1.8.5 crear una carpeta llamada “portable
  4. Abrir el programa arduino.exe
  5. Instalar la placa del industruino -> clicando Tools -> Boards Manager y buscando “industruino” -> Insalar “Industruino SAMD Boards 1.01
  6. Cerrar el entorno de programación de Arduino
  7. Descargar el proyecto Ikusi-Makusi de GitHub y extraerlo en donde se quiera
  8. Descargar el proyecto Ikusi-Makusi-libraries de GitHub y copiar las librerías en la carpeta arduino-1.8.5\libraries
  9. Abrir el programa arduino.exe de nuevo, en Herramienta->Placa seleccionar Industruino D21G y en Herramientas->Puerto el puerto de series correspondiente.
  10. Abrir el archivo Industruino_ethernet.ino del proyecto Ikusi-Makusi con el IDE de Arduino.
  11. Compilarlo y subirlo al Industruino.
  12. Conectad el Industruino a una red con DHCP y encenderlo.
  13. Con los botones navegar hasta la pantalla RED y mirad la IP asignada.
  14. Meter la IP en cualquier navegador web y empezar a experimentar.

Continuará…